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We consider a model of a multiclass make-to-stock manufacturing system. External demand for each product class is met from the
available finished goods inventory; unsatisfied demand is backlogged. The objective is to devise a production policy that minimizes
inventory costs subject to guaranteeing stockout probabilities to stay bounded above by given constants €;, for each product class j (service
level guarantees). Such a policy determines whether the facility should be producing (idling decisions), and if it should, which product
class (sequencing decisions). Approximating the original system, we analyze a corresponding fluid model to make sequencing decisions
and employ large deviations techniques to make idling ones. We consider both linear and quadratic inventory cost structures to obtain
a priority-based and a generalized longest queue first-based production policy, respectively. An important feature of our model is that it
accommodates autocorrelated demand and service processes, both critical features of modern failure-prone manufacturing systems.

1. INTRODUCTION

Make-to-stock manufacturing is the norm for a very large
variety of industries. In such systems, demand is met from
a finished goods inventory (FGI) and the production facil-
ity strives to maintain this inventory nonempty to avoid
stockouts which lead either to backordered demand or sim-
ply lost sales. Most of the retail products, cars, appliances,
silicon chips, and jet engines, are just a few examples
in the huge set of products manufactured in this fashion.
In make-to-stock manufacturing the fundamental trade-off
is between producing, which accumulates inventory and
incurs inventory costs, and idling, which leads to stockouts
and unsatisfied demand. In multiclass systems, where a sin-
gle facility produces several products, an additional control
action is sequencing or scheduling, that is, what product to
produce, if any. We will refer to the set of rules that deter-
mine both (a) sequencing decisions, and (b) idling deci-
sions, as production policy. The objective is to devise a pro-
duction policy which optimizes some measure of the sys-
tem’s performance. This measure should incorporate both
inventory costs and backorder costs, i.e., costs associated
with not being able to meet demand at the time it arrives.
The single-class version of the problem has been studied
extensively in the literature (Evans 1967, Sobel 1982, Gav-
ish and Graves 1980, Federgruen and Zipkin 1986). (For a
more extensive literature review see Kapuscinski and Tayur
1999.) In an M/M/1 setting it has been established that a
base-stock policy (produce when inventory falls below a
cetain threshold and idle otherwise) is optimal (Gavish and

Graves 1980, Sobel 1982). The same is true for renewal
demand and deterministic production capacity (Federgruen
and Zipkin 1986). In Akella and Kumar (1986) the opti-
mality of a similar policy has been established when the
demand is deterministic and the production capacity mod-
ulated by a two-state Markov chain. In Zheng and Zipkin
(1990) the M/M/1 version of a two-class system is ana-
lyzed under the longest queue first policy. In Wein (1992)
the multiclass case is analyzed in heavy traffic and an idling
policy is proposed where production stops when a weighted
sum of the expected backlogs for different classes exceeds
a certain threshold value. When the facility should be work-
ing it uses a scheduling policy which resembles one of
the policies (the priority-based policy) we will propose in
this paper. The priority-based policy is further justified by
arguments in Pefia Perez and Zipkin (1997) under some
cost assumptions (‘“weakly-cost-ordered” model). This lat-
ter paper also proposes a heuristic sequencing policy cou-
pled with a base-stock idling policy. Additional heuristic
policies are compared in Veatch and Wein (1996) and a
heuristic sequencing policy coupled with a heavy-traffic-
based idling policy is proposed. In Ha (1997) the optimal-
ity of a priority policy is established in a two-class system,
and monotone switching curves are numerically obtained. A
more detailed, but still partial, characterization of the opti-
mal policy in some two-class systems is given in de Véri-
court, Karaesmen and Dallery (1998). The hedging point
we propose in this paper is in accordance with the result
in de Véricourt, Karaesmen and Dallery (1998). Finally, a
static allocation policy is considered in Glasserman (1996)
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for the multiclass system and asymptotically analyzed for
renewal arrivals and services by essentially decomposing
the system to single-class systems. In the latter paper, the
author considers probabilistic service level constraints and
uses asymptotics which are similar in spirit to ours but
apply only under renewal assumptions (for related work see
also Glasserman and Wang 1998 and Glasserman 1997).

Our main contributions in this paper are:

(1) Probabilistic constraints to capture Quality of Ser-
vice (QoS). Most of the work in the literature considers
minimizing expected linear inventory and backorder costs.
In practice, and at least for big manufacturing facilities
which maintain relatively large quantities of finished goods
inventory, linear inventory costs are a good approximation
of reality and data to estimate the slope of the cost func-
tion are readily available. However, the same cannot be
said about backorder costs. The assumption of linear back-
order costs, that is often made in the literature, appears to
serve analytical tractability rather than an accurate repre-
sentation of reality. Moreover and more importantly, it is
hard to obtain data which will help quantify customer sat-
isfaction via linear backorder costs. To address this need,
we introduce constraints that ensure that probabilities of
stockout for different products stay bounded below given
desirable levels. We believe that such constraints result
in a more natural representation of customer satisfaction.
Thus, we formulate the performance objective as: minimize
expected inventory costs subject to stockout probabilities
being bounded above by given constants.

(2) Dependencies in demand and service processes. In
practice, demand for various products might have strong
correlations with a variety of phenomena such as: sales
events (e.g., sales and discount events increase demand
while they last), weather patterns (e.g., severe rains can
increase the demand for umbrellas), state of the economy
(e.g., economic prosperity leads to more demand for con-
sumer products), technological advances, demand for other
products, etc. An additional complication is that manufac-
turing facilities are stochastic and failure-prone. In partic-
ular, when a machine breaks down, it is very likely to stay
down for some period of time, which disrupts the output
flow and creates dependencies. To accommodate such phe-
nomena, our analysis will allow demand and production
to be modeled by autocorrelated stochastic processes. We
will demonstrate that such distributional information (vs.
knowledge of the first two moments only) on demand and
service processes is critical in optimizing the performance
of the make-to-stock system.

(3) Fluid and large deviations techniques. On the
methodological side, we combine recently developed tech-
niques in fluid models and large deviations. We decom-
pose the derivation of the proposed production policy in
two parts: (a) sequencing or scheduling decisions, and (b)
idling decisions. For part (a) we ignore stochasticities and
consider a fluid model of the problem. Our motivation
is that fluid models have been shown to provide good
scheduling policies in a variety of settings (see for example

Avram, Bertsimas and Ricard 1995 and Meyn 1996). For
part (b) we employ large deviations techniques to obtain
provably tight asymptotics on the stockout probabilities.

The remainder of this paper is organized as follows:
In §2 we provide a detailed model of the make-to-stock
manufacturing system we will analyze. In §3 we summa-
rize background material on large deviations. In §4, and to
motivate the subsequent analysis, we consider the simpler
single-class case and derive the production policy using
our large deviations asymptotics. We show that this policy
is optimal in the M/M/1 case. In §5 we introduce a fluid
model for the problem and solve it to obtain the structure
of the scheduling policy under two different cost function-
als. In §6 we utilize the structure obtained from the fluid
analysis and depending on inventory cost assumptions we
propose two distinct production policies: a priority-based
policy and a generalized longest queue first-based (GLQF)
policy. In both policies idling depends on a hedging point
or vector of safety stocks. We analyze these policies in the
large deviations regime in §7 and use the latter analysis
in §8 to select an appropriate hedging point. This hedging
point and inventory cost assumptions completely determine
the operation of the GLQF-based production policy. This
is not the case with the priority policy: the optimal pri-
ority ordering is determined in §9 so that total expected
inventory cost is minimized. To that end, large deviations
asymptotics are again employed. Finally, in §10 we present
numerical results to assess the performance of the proposed
policies. Concluding remarks are in §11.

2. THE MODEL

We consider the multiclass make-to-stock manufacturing
system depicted in Figure 1. The production facility pro-
duces m products to be stocked in finished goods inventory.
Demand is met from the available finished goods inven-
tory, and it is backordered if inventory is not available. We
assume a periodic review policy where time is divided into
time slots of equal duration and the system is examined
at the beginning of each time slot. We let D] denote the
amount of class j orders arriving during time slot i, for
i in the set of integers Z and j=1,...,m. We will be
measuring D; in production time units when the facility is
working at a production rate of 1. That is, D] is equal to
the time that the production facility requires to produce, at
a production rate of 1, the amount of class j orders arriv-
ing during time slot i. We let also B; denote the amount of
work, measured in the same production time units, that the
production facility can complete during time slot i. Finally,
let x/ denote the class j inventory, measured in the same
production time units, which is available at the beginning
of time slot i (without taking into account D/ and B;). We
allow the inventory to take negative values to denote back-
ordering; when x] is negative —x] is equal to the amount
of work backordered from class j. We will be using the
notation x; = (x!, ..., x"). A

All the demand processes {D/;i€ Z,j=1,...,m} and
the production process {B;; i € Z} are arbitrary stationary



Figure 1. A multiclass make-to-stock manufacturing
system.
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stochastic processes that satisfy certain mild technical con-
ditions. These conditions are satisfied by renewal processes,
Markov-modulated processes, and, in general, stationary
processes with mild mixing conditions (for details see Bert-
simas, Paschalidis and Tsitsiklis 1998a, 1999). For stability
purposes we assume that

m

Y E[D{] <E[B], (1)

j=1

which by stationarity carries over to all time slots i.

As discussed in the Introduction, our objective is to
devise a production policy that minimizes finished goods
inventory costs and guarantees that the steady-state stock-
out probabilities P[x] < 0] do not exceed some desired
small values € s for each class j. We will refer to these lat-
ter constraints as service level constraints. Of course, with
such constraints we can only control the fraction of stock-
outs. This does not penalize a policy where some customers
end up waiting much longer than others when backlogged,
and can lead to unfair practices (see Spearman and Zhang
1999). Nevertheless, the production policies we will pro-
pose are “fair” in that they do not discriminate between
customers of the same class.

Outline of Our Approach

We next briefly outline the approach we will use to achieve
the objective outlined above. We will first ignore stochas-
ticities and consider a deterministic version of the problem
for which we will obtain an optimal sequencing policy. For
the purposes of this deterministic version of the model we
will assume that the backlog at time slot i incurs cost at a
rate of pIy f;(x}) per time slot, where the cost function
fi (x]) can have one of the following two forms (linear or
quadratic):

; hox! x>0
LixnN={"7"" U 2
f] (-xz) {bj| l{, X{SO, ( )
or
fRD) =¢;(x)), 3)
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where hj, bj, cj,j =1,...,m, are nonnegative constants.
We will obtain optimal sequencing policies that minimize

T m .
Y3 f).
i=1 j=1
under both cost assumptions, where T is the time horizon
of interest. To that end, we will introduce a continuous-
time fluid model (i.e., the continuous-time analog of the
deterministic version of the problem) and use calculus of
variations techniques. In view of our earlier comments in
the Introduction on the linear backorder cost assumptions,
we note that we make the cost assumption in (2) just for the
purposes of deriving the structure of the sequencing policy.
The fluid model evolves in continuous time and ignores
stochasticities in the demand and service processes which
lead to stockouts. To accommodate these effects we will
consider a deterministic analog of the optimal “fluid”
sequencing policies and enhance them with an appropri-
ate idling policy. For relatively large inventories, or equiv-
alently for small stockout probabilities, stockouts are rare
events; hence, we will use large deviations theory to ana-
lyze the resulting production policies and tune the param-
eters that characterize the corresponding idling policy. We
will finally provide evidence (analytical and numerical) that
the large deviations asymptotics are relevant; i.e., the ana-
Iytically calculated parameters of the proposed production
policies are very close to simulated values.

3. BACKGROUND MATERIAL ON
LARGE DEVIATIONS

Before we proceed with our agenda we first review some
basic results, which will also help in establishing some of
our notation. Consider a sequence of i.i.d. random variables
X,,i > 1, with mean E[X,] = X. The strong law of large
numbers asserts that (31, X;)/n converges to X, as n —
oo, w.p.1. Thus, for large n the event > ;_, X; > na, where
a>X (or Y'_, X, < na, for a < X) is a rare event. More
specifically, its probability behaves as e (9, as n — oo,
where the function r(-) determines the rate at which the
probability of this event is diminishing. Cramér’s theorem
(Cramér 1938) determines r(-), and is considered the first
Large Deviations statement. In particular,

r(a)= sgp(@a —logE["" ])

Consider next a sequence {S,,S,,...} of random vari-
ables, with values in R and define

1
A, (6) = = log B[], @)
n
For the applications we have in mind, S, is a partial sum
process. Namely, S, =>""_, X;, where X;, i > 1, are identi-

cally distributed, possibly dependent, random variables. Let

1
A(6) = lim A, (0) = lim — log E[¢"]. (5)
n—oo n—oo N
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(We assume that the limit exists for all 6, where doco are
allowed both as elements of the sequence A,(6) and as
limit points.) We will refer to A(-) as the limiting log-
moment generating function. Let us also define

A*(a) = sup(8a — A(6)), (6)
0

which will be referred to as the large deviation rate
function. Under a technical assumption (see Dembo and
Zeitouni 1993) it has been established (Girtner-Ellis Theo-
rem) that for large enough n and for small € > 0,
P[S, € (na—ne, na+ne)] ~ e "M@,
This can be viewed as an extension of Cramér’s theorem to
autocorrelated stochastic processes. We say that {S,} satis-
fies a Large Deviations Principle (LDP) with rate function
A*(-). The notation “~” should be interpreted as “asymp-
totically behaves”; more rigorously, the logarithm of the
probability divided by n converges to —A*(a), as n — oo.
(For a more rigorous statement of the Gértner-Ellis theo-
rem see Dembo and Zeitouni (1993).)

In the sequel, we will be denoting by A, (-) and A%(-)
the limiting log-moment generating function and the large
deviations rate function, respectively, of the process X.

4. THE SINGLE CLASS CASE

To motivate the subsequent multiclass analysis, in this sec-
tion we focus on the simpler single-class case. In partic-
ular, we assume that the manufacturing facility produces
only a single product with demand {D;; i € Z}. The mod-
eling assumptions are as in §2. In this case, there are no
scheduling decisions to be made. Thus, we are interested
in an idling policy which guarantees that the steady-state
stockout probability P[x; < 0] does not exceed a desired
small value e.

For the single-class system it has been shown in a variety
of settings (Evans 1967, Sobel 1982, Gavish and Graves
1980, and Federgruen and Zipkin 1986) that a so-called
base stock policy is optimal. According to such a policy,
the system produces if the inventory x; falls below a certain
threshold value w, and idles otherwise. We will refer to w
as the hedging point or safety stock. Hence, our objective
is to determine w to satisfy

<0]<e. @)

We first observe that under the above base stock policy
the make-to-stock system can be transformed to an equiv-
alent make-to-order system. In particular, consider the
transformation
Li=w—ux, 3)

and note that L; can be interpreted as the queue length dur-
ing time slot i in a discrete-time G/G/1 queue with D,

arrivals and at most B; services during time slot i. Conse-
quently, the stockout probability in the make-to-stock sys-
tem is equal to the overflow probability in the correspond-
ing make-to-order system; i.e.,

Z wl, €))

and thus it suffices to bound the latter one with e.

Calculating the above overflow probability exactly is par-
ticularly hard in view of the complicated stochastic nature
of the arrival and service process (processes with depen-
dencies). To that end, we will use large deviations asymp-
totics. Under very general assumptions that include renewal
processes, Markov-modulated processes, and in general
arbitrary stationary processes with mild mixing conditions
(see Dembo and Zeitouni 1993), the following proposition
has been established (Glynn and Whitt 1994, Bertsimas,
Paschalidis and Tsitsiklis 1998b).

In preparation for the result, consider a convex func-
tion g(u) with the property g(0) = 0. We define the largest
root of g(u) to be the solution of the optimization problem
SUP,,.o(<o U- I g(-) has negative derivative at u =0, there
are two cases: either g(-) has a single positive root or it
stays below the horizontal axis u =0, for all u > 0. In the
latter case, we will say that g(-) has a root at u = oo.

PrROPOSITION 4.1 (SINGLE CLASS). The steady-state queue
length process L, satisfies

1
lim —logP[L; > w] = —0", (10)

w—>oc0 Y

where 6* > 0 is the largest root of the equation
Ap(0)+Ap(—0)=0. (11)

More intuitively, for large enough w we have

<0]=P[L, wo,

l

>w]~e”

Thus, approximating the stockout probability with the right-
hand side of the above, we conclude that the minimum
value of w (hedging point) guaranteeing (7) is given by

loge
o+

w= (12)
If 6* = oo, then no stockouts occur and a hedging point
equal to zero should be used (Just in Time (JIT) policy).

The M/M/1 Case

To assess the accuracy of the asymptotics in Proposition 4.1
we next consider the M/M/1 case. We assume that demand
for products arrives according to a Poisson process with
rate A. To produce a single product requires an exponen-
tially distributed amount of time with parameter pw.

To cast these assumptions into our discrete-time model
we let the duration of a time slot be equal to §; we will later



take the limit as 6 — 0. According to our modeling conven-
tions (i.e., measuring demand in time units), the demand
during time slot i is given by

b, — {Y, with probability A8, 13

0, with probability 1 — A6,

where Y is exponentially distributed with parameter p.
Assuming that the service facility works at a production
rate of 1, the service process during time slot i is charac-
terized by

B =s. (14)

To apply the result of Proposition 4.1 we calculate the log-
moment generating functions of the demand and service
processes. It particular,

Ap(0) = logE[e?”]
— 1og<A5L (1 m)), for 0 < u,
n—0
and
Ay(8) = 86.

We now take 6 — 0 and solve Equation (11) ignoring O(6%)
terms to obtain that the largest positive root is 0* = u — A.
Hence, using Equation (9),

Plx; <0] =P[L, > w] ~ e, (15)

The important observation is that the expression above
is exact, and thus it leads to an exact calculation of the
hedging point. To see that, notice that the system time in an
M /M /1 queue is exponentially distributed with parameter
1 — A. In summary, we established that in the single class
M /M1 case large deviations asymptotics lead to an exact
derivation of the optimal idling policy.

5. A FLUID CONTROL PROBLEM

As discussed in §2, in order to make sequencing decisions
we consider a fluid model of the problem: time becomes
continuous and orders as well as finished goods flow into
the inventory as continuous fluids. Let x;(¢) denote the
class j backlog for the fluid model. We will write x(¢) =
(x,(2),...,x,(t)) for the vector of the backlogs. Let also
u;(t), T;(t) be the instantaneous and cumulative service
effort allocated to class j at time ¢ respectively. Clearly,

T (1) =/t u,(s) ds.
0

We will be using the notation u(¢) = (u,(¢), ... , u,,(t)) and
T(t) = (T,(1), ... , T, (¢)). Let finally d = (d,, ... . d,) =
(E[D]],... ,E[D}"]). Then the fluid control problem
becomes:

T m

minimize /0 Zf,‘(-xj(t)) dt
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x(t) =u(r)—d,
e'u(t) <E[B], (16)

subject to

x(0) : given,

u(z) =20,

where e is the vector of all ones, 0 the vector of all zeros,
and prime denotes transpose. Changing variables, the prob-
lem becomes:

minimize /0 ! i £,(x,0) + T,(t) —d,1) dt
=1

subject to e'T(r) <E[B,]t, 17)

T;(t) : nondecreasing for all j.

Suppose we have found the optimal policy until time
s, where s € [0,T). In the next proposition we derive
the structure of the optimal policy under the linear and
quadratic cost assumptions of (2) and (3) in the infinites-
imal time interval [s,s+ 6], where 6 — 0. We assume
that the initial state x(s) for this interval is given and that
x;(s) # 0 for all j.

PROPOSITION 5.1. Let u}(t) and x;(t) denote the optimal
control and state trajectories, respectively, for all j =
1,...,mandt€[s,s+06].

(1) (LiNEAR CosT). Assume f;(x;(1)) = f}(x;(1)), for
all j=1,...,m and t € [s,s+ 0], and that b; #
by for all j # j. Then the optimal policy is as
follows: If all x;(s) > 0, then idle (i.e., uj(t) =
0 for all j and t € [s,s+ 6]). Otherwise, among
the classes that have negative x,(s), work on the
class that has the highest index b; (ie, j* =
argmaxy;. (<o) b;, u;.(t) =E[B,], and ui(t) =0 for
all j # j* and t € [s, s+ 8)).

(2) (QuabraTic Cost). Assume f;(x;(t)) = fJQ(xj(t)),
for all j=1,...,m and t € [s,s+ 8], and that
cilx;(s)| # cjlx; (s)| for all j# j'. Then the opti-
mal policy is as follows: If all x;(s) > 0, then idle
(e, wi(t)=0 for all j and t € [s, s+ 8]). Other-
wise, among the classes that have negative xj(s),
work on the class that has the highest index c;|x;(s)|
(ie, j*=argmax;, o ;lx;(s)], u. (1) = E[B,],
and wi(t) =0 for all j # j* and t € [s, s+ ]).

Proor. We will apply standard calculus of variations tech-
niques (see Bertsekas 1995, Chapter 3] on Pontryagin’s
minimum principle). The Hamiltonian is given by

H(x,u,p) =) fi(x)+ > p;j(u;—d;),
j=1 J=1

where X, u, p € R™. The optimal state trajectory in [s, s+ 6]
satisfies

x* (1) =u*(¢) —d, x* (s) = x(s) : given,
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and p(¢) satisfies the adjoint equation
p(2) = -V, H(x*(1),u* (), p(1))
=LA@, ptd =0
=
The optimal control trajectory is given by
u*(r) = argmin 4 (x" (1), u, p(1)),

where % = {u>0|eu<E[B,]}. Since we are dealing with
a convex objective function, linear state dynamics, and we
are optimizing over a convex set %, Pontryagin’s minimum
principle provides necessary and sufficient conditions for
optimality. From the structure of the Hamiltonian it can be
seen that

0, if p,(1) > 0 Vj,
E[B,], if 3k with p,(¢) <O,

Jj* = argmin, {p,(1)}. and j = J".
0, if 3k with p,(¢) <0,

j* = argmin {p,(1)}. and j # "

wi(t) =

Let us next focus on the case of linear cost. The adjoint
equation takes the form

s

P j ’

with terminal condition p;(s+8) = 0. We can distinguish
two cases:

(1) x;(s) > 0 for all j. Then for all j and ¢ € [s, s+ J]
we have p;(1) = —h;(t —s—46) and uj(z) =0.

(2) There exists at least one negative x;(s) and j* =
argmax ;. (o) b;- Then for all j with x;(s) <0 we have
p;(t) =b;(t—s—3). According to the optimality condition
we work on the class with the most negative p;(¢), which
is j* for all t € [s, s+ 6].

A similar argument holds for the quadratic cost case. The
adjoint equation takes the form

p;(t) = —2¢;x3(1),

with terminal condition p;(s+ 0) = 0. Again, we have two
cases:

(1) x;(s) > 0 for all j. Then p,(t) >0 for all j and
t € (s, s+ 0) and the optimal policy is to idle.

(2) There exists at least one negative x;(s) and j* =
argmax ;. (o) ¢;lx;(s)|. Then for those j with x;(s) <
0, p;(¢) is quadratic in [s, s+ 0] and the most negative is
the one with the largest slope at s+ 8, which is the same
as the one with the largest slope at s (since 6 — 0), that is,
Jj*. The optimality condition implies that we should work
on class j*. O

The proposition above implies that the optimal policy
at time s depends only on the state at that time and not
explicitly on s. By discretizing time, using induction, and

applying Bellman’s principle of optimality, it can be shown
that Proposition 5.1 characterizes the structure of the opti-
mal policy in [0, T']. In particular, we work on the class j
that has the highest index b; (for the linear cost case) or
¢jlx;(#)| (for the quadratic cost case) among those classes
that have negative inventory; if all classes have positive
inventory we idle.

Notice, that we have not spelled out here the detailed
implementation of the optimal fluid policy, because this
does not impact our later large deviations analysis. In par-
ticular, we have not specified what the optimal policy does
if x;’f(t) =0, for some j, or if there is a tie in the definition
of j* in the statement of Proposition 5.1. It can be shown
that in both these cases the server should split its capacity
between classes. In particular, if x(z) =0, for some j, the
server should keep the backlog of class j at zero by allocat-
ing uj(t) = d;. Similarly, if there is a tie in the definition
of j* the server should split its capacity between all classes
J with j = j* to keep them at the same level of backlog.

6. THE PROPOSED PRODUCTION POLICY

The analysis of the previous section led to optimal sequenc-
ing policies in the fluid model. However, since stochastici-
ties are completely ignored, it does not provide any infor-
mation on the idling policy. Motivated by the optimality
results for the single class case (Evans 1967, Sobel 1982,
Gavish and Graves 1980, and Federgruen and Zipkin 1986)
we will enhance the “fluid” policy to hedge against stochas-
ticity and focus on a base stock class of policies. In particu-
lar, we will consider the following idling policy that utilizes
a so-called hedging point or safety stock w = (w,, ... ,w,,):

e idle during time slot i when x; > w, and

e work on the classes j that satisfy x] < w;, without
exceeding the corresponding safety stock w;.

In the latter case, one of the sequencing policies deter-
mined by the optimal fluid policy will be followed, as
listed, below:

PRIORITY-BASED PoLicy: We define a fixed ordering
(x(1), ..., x(m)) of the set of classes {l,...,m} and we
work on the class j which has the highest rank y(j) and
satisfies x{ < w;.

GENERALIZED LONGEST QUEUE FIRST-BASED PoLICY
(GLQF): We define scalars cy,...,c, and we work on
the class j that maximizes c;(w; — x;), assuming that there
exists at least one j that satisfies x{ <w;.

Some comments on these policies are in order. The
priority-based policy with ordering determined by the
indices b; is identical to one of the policies proposed in
Pefia Perez and Zipkin (1997). Under the weakly-cost-
ordered assumption of Pefia Perez and Zipkin (1997) (i.e.,
argmin; b; = argmin; h;) this policy is of the type proposed
in Wein (1992) and is asymptotically optimal in heavy traf-
fic (see Pefia Perez and Zipkin 1997, §3] for a rigorous
statement and an interesting discussion). Furthermore, in
the two-class M /M /1 case the authors in de Véricourt et al.



(1998) prove the optimality of a priority policy in a part of
the state space. The GLQF-based policy can be seen as a
generalization of the longest-queue-first policy analyzed in
a symmetric two-class M /M /1 case in Zheng and Zipkin
(1990). If the objective is to minimize expected inventory
and backorder costs, the proposed production policies are
not optimal. The optimal policy is in fact unknown (expect
in very limited special cases) and only heuristics (occa-
sionally based on asymptotics) have been proposed to date.
As outlined above, though, the objective we pursue in this
paper is to minimize inventory costs subject to probabilistic
service level guarantees. The fluid analysis narrows down
the choices for sequencing policies; it provides two classes
of interesting policies, which have optimality properties at
least in the fluid limiting regime. We will later select a pol-
icy within each class (i.e., select the “best” priority policy
and the appropriate GLQF policy) based on inventory cost
considerations.

Given the two proposed production policies, we are inter-
ested in determining a hedging point w which guarantees
that the steady-state stockout probabilities P[x! < 0] do not
exceed some desired small values € i for each class j. As
in the single-class case, the system can be transformed to
an equivalent make-to-order one. More specifically, let L;
denote the vector (L}, ..., L") for each time slot i and
consider the transformation

L, :=w—x,. (18)

Note that under the proposed idling policy x! is in the

interval (—oo, w;] for all time slots i and classes j. Hence,
L] is in the interval [0, c0), with zero corresponding to
the hedging point. The vector L; evolves exactly as the
queue length vector of a discrete-time multiclass queue
with dedicated buffers for each class, arrival processes
(Dl;ieZ,j=1,...,m}, and service process {B;; i € Z}.
Therefore, based on this equivalence the stockout probabil-
ity is equal to the overflow probability in the make-to-order
system, i.e.,

Plx; < 0] =P[L] > w,],

1

ieZ, j=1,....m. (19

Since the exact calculation of these probabilities is
intractable we will resort to asymptotics. Recently, some
new asymptotic techniques for calculating such tail prob-
abilities have been developed by the authors (Paschalidis
1996, Bertsimas et al. 1998a, b, 1999) based on ideas from
large deviations theory, optimal control, and optimization.
We will extend these results to analytically approximate the
stockout probabilities.

7. ASYMPTOTIC EXPRESSIONS FOR
THE STOCKOUT PROBABILITIES

In this section we extend the results from Paschalidis
(1996), Bertsimas et al. (1998a, 1999) to obtain asymp-
totic expressions for the stockout probability of each class.
Based on the equivalence with the corresponding make-to-
order system that we obtained in §6 it suffices to obtain
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asymptotics on the overflow probabilities in multiclass
queues with dedicated buffers operating under a strict pri-
ority policy, and the GLQF policy (cf. Equation (19)).

The results in this section hold under fairly general
assumptions on the stochastic processes involved (arrival
and service processes). As we mentioned in §2, these
assumptions are satisfied by renewal processes, Markov-
modulated processes, and in general, stationary processes
with mild mixing conditions (for details see Bertsimas et al.
1998a, 1999).

7.1. Priority Policy

Without loss of generality we reorder the classes so that
strict priority is given to classes 1, ..., m in this order. The
main result on the overflow probabilities of the correspond-
ing make-to-order system is summarized in the following
theorem.

THEOREM 7.1 (PrIORITY PoLICY). Under the policy which
gives priority to class j over class j' for all j < j', the
steady-state queue length L' of class 1 satisfies

1
lim —logP[L' > w,]= =05, (20)

W) —> 00 wl

where 0} is given by

6;, = inf —Aj(a), 1)
and where
Aj(@) = inf [A} () +A50)]: 22)

Moreover, the steady-state queue length L’ of class j, for
j=2,...,m, satisfies

1 .
lim —logP[L' > w;] = —0;/_, (23)

wj—>00 wj

where B;j is given by

O, = 2 A (@), e
and where

j—1
N@2 it M)+ EAL 0] 09

T 1= -

Yy

ProOOF. The main technical result on which this theorem
is based has been established in Bertsimas et al. (1999).
Equation (20) is obtained by direct application of Corol-
lary 7.1 in Bertsimas et al. (1999), which provides the large
deviations exponent of the overflow probabilities in a two-
class priority queue. For Equation (23) we group classes
1,...,j—1 into one superclass and use the result of Corol-
lary 7.1 in Bertsimas et al. (1999) to obtain the tail of the
queue length process for class j. Note that since the policy
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of interest is a priority policy, the queue length of class j
is not affected by classes j+ 1, ..., m and by the schedul-
ing policy used for classes 1,...,j—1, as long as it is
a work-conserving one. Moreover, it is not hard to ver-
ify that the limiting log-moment generating function of the
demand process for the superclass constructed by bundling
together classes 1,...,j—1 is given by Z{;I' Api(6). By
standard convex analysis properties (Rockafellar 1970) the
corresponding large deviations rate function is given by

-1
inf > TAL(x;).
Zi’:I =2 =1

Using the above expression in the result of Corollary 7.1
in Bertsimas et al. (1999) yields Equation (23). O

REMARKS.
(1) Intuitively, the result is that the overflow probability
for class j =1,2,...,m (hence, due to (19) the stockout

probability as well) satisfies

Pl O] =P[L/ > w,]~e "%, (26)
asymptotically, as w; — oco. We will be referring to 0;",/ as
the asymptotic decay rate of the stockout probability.

(2) To establish this result, in Bertsimas et al. (1999) we
have combined techniques from large deviations and opfi-
mal control. In particular, we introduced an optimal con-
trol formulation that provides a tight (up to first degree
in the exponent) lower bound on the overflow probabil-
ity. A matching upper bound was proved via large devia-
tions techniques, thus, establishing the result. To develop
the lower bound we considered all scenarios (sample paths)
that lead to an overflow. We showed that the probabil-
ity of each of these scenarios w asymptotically behaves
as e "% for some function 6(w). This probability is a
lower bound on P[x] < 0] for all w. We selected the tight-
est lower bound by minimizing 6(w) over all scenarios ,
which amounts to solving a deterministic optimal control
problem. Optimal trajectories (paths) of the control prob-
lem correspond to most likely overflow scenarios. The inter-
esting conclusion from this discussion is that the control
problem formulation provides both the answer (the asymp-
totic decay rate of the overflow probability), along with an
intuitive understanding of how the overflow occurs and how
different classes interact.

(3) Itis instructive to characterize these most likely over-
flow scenarios. The proof of the theorem suggests that it
suffices to consider a two-class system. Figure 2 depicts
the situation for the high-priority class. We denote by Lhieh
and L™ the properly normalized queue lengths of the
high- and low-priority classes, respectively. In this normal-
ized space, overflow means reaching a value of 1, thus, a
most likely scenario is one which drives an empty system
((LMeh, L'v) = (0, 0)) to any point on the threshold line
LM — 1 and has the largest probability among all such
scenarios. It can be proven that in this scenario L"¢" grows
linearly, and thus receives all the capacity. Consequently,
the low-priority queue overflows as well (also linearly).

Figure 2.  The most-likely overflow scenario for the
high-priority class.
Llow
1 [high
Figure 3.  The most-likely overflow scenarios for the
low-priority class.
[Lhigh [high

1 Llow 1 Llow

The situation is different for the overflow of the low-
priority class (see Figure 3). There are two most likely sce-
narios and which one occurs depends on the distributions
of the arrival and service processes. Scenario (b) is simi-
lar to the one for the overflow of the high-priority class,
that is, to have an overflow of the low-priority class both
classes have to overflow. It is also possible however, that
the high-priority class does not consume all the capacity
but the residual capacity is not enough for the low-priority
class. This latter case is depicted in Figure 3(a).

As the result indicates, the calculation of the overflow
probabilities involves the solution of an optimization prob-
lem. The next theorem establishes that due to the special
structure this optimization problem exhibits, it is equivalent
to finding the maximum root of a convex function. Such a
task might be easier to perform in some cases, analytically
or computationally.

THEOREM 7.2. 0} is the largest positive root of the
equation

Api(8) + A g(—8) =0. @7)
Also, 0}",] is the largest positive root of the equation

j—1

AD,-(H)+0£nf9|:ZAD;(0—u)+AB(—9+u)] =0. (28
SusOLi

PrOOF. We use the argument used in the proof of Theo-
rem 7.1 and the result of Corollary 7.3 in Bertsimas et al.
(1999), which provides the large deviations exponents of
the overflow probabilities in a two-class priority queue as
largest roots of nonlinear equations. [J



7.2. The GLQF policy

We next turn our attention to the GLQF policy. Recall that,
according to this policy, among all classes with backlogs
below their hedging point, during time slot i, we work
on the one that maximizes c;(w; —x{). Thus, due to (18),
in the corresponding make-to-order system we serve the
queue with maximum ch{ .

The following theorem is from Bertsimas et al. (1998a)
and holds under the same general assumptions as Theorem
7.1. The theorem establishes asymptotics for two-class sys-
tems. The general case appears much harder and large devi-
ations results are not available. One can use instead tight
(but not asymptotically tight in the sense that there exists a
lower bound with the same exponent) upper bounds on the
overflow probabilities developed in Paschalidis (1998).

THEOREM 7.3 (GLQF poLicy). Let 8 = c¢,/c,. Under the
GLQF policy the steady-state queue length L' of class 1
satisfies

1
lim —logP[L' > w;]= =05, (29)

wy)—> 00 wl

where 03, oF, is given by
* . . 1 JES . 1 VIES
06Lor, = min i‘lﬁ ZAGLQF, (a), gg ;AGLQF] (a) |, (30)

and the functions Ag, o () and Agf oy (-) are defined as
follows

« A . * * *
Agror (@) = A0 [AD () + Ape (1) + A (x3)], BD)
2 <B(x;—x3)

and

AII* (a)

GLQF,

A .
= inf
xX1—¢x3=a
x—(1=¢)x;=Ba
0<p<l1

[Api(x)) + A% () + Aj(xy)]. (32)

REMARKS.

(1) Our analysis also provides the most likely overflow
scenarios, which we depict in Figure 4. In scenario (a) L!
builds up linearly while staying larger than (1/8)L?, which
forces the server to attend only to L' during the busy period
of overflow. In scenario (b), L' builds up also linearly but
with L? = BL! holding. This implies that the server splits
its capacity between the two queues during the busy period
of overflow.

(2) By symmetry, the results can be easily adapted (it
suffices to substitute everywhere 1:=2,2:=1, and 8 :=
1/B) to estimate the overflow probability of the second
queue and characterize the most likely ways that it builds

up.
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Figure 4. The most-likely overflow scenarios for class
one under the GLQF policy.
L? L?
slope 8
(a) (b)
1 Ll 1 Ll

8. AN ANALYTIC EXPRESSION FOR
THE HEDGING POINT

In this section we provide refined asymptotics on the stock-
out probabilities and we use them to analytically deter-
mine the appropriate hedging point w such that the stock-
out probability of each class j is upper bounded by some
desired ;.

Notice that in §7 we considered the large deviations
asymptotics of the stockout probabilities as w; — oo, for
each class j. It has been observed that in some cases one
might need a large value of w; (or equivalently a small
value of €;) to obtain an accurate estimate of the stockout
probability. To avoid such accuracy problems we will con-
sider a refined asymptotic. More specifically, we will be
estimating the stockout probability of class j by using the
expression

P[x' < 0]~ aje_'”fg?, (33)

where 607 is the decay rate of the stockout probability
obtained from the results of §7 (either from Theorem 7.1 or
Theorem 7.3 depending on the policy implemented). Thus,
the hedging point satisfies

wjz_log(z—;/aj)’ j=1,...,m. (34)
J

If 6}‘ = oo, then stockouts for class j do not occur and a

hedging point equal to zero should be used.

An estimate of the constant «; can be obtained by using
an idea from Abate, Choudhury and Whitt (1995) and
assuming that the above expression provides the exact dis-
tribution of the backlog process. Using the transformation
in (18) it also provides the distribution P[L/ > w;] for the
queue length process in the corresponding make-to-order
system operated under the priority policy or the GLQF pol-
icy, respectively. Matching the expectation of the distribu-
tion in (33) with E[L’] we obtain

a; = 0°E[L]]. (35)

Thus, to find the asymptotic constant we need the asymp-
totic exponent 67 and the expectation of the queue length
process L’/ in a multiclass G/G/1 queue. The latter one
can be obtained either by approximations or by simulation.
We will argue in §10 that simulating to obtain the expec-
tation incurs no additional computational cost to the one
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required to estimate a model for the demand and service
processes. As an alternative to simulation we next provide
approximate expressions for E[L/] in the case of the prior-
ity policy.

Approximations for E[L/] under the Priority Policy

We let ¢;; denote the squared coefficient of variation (i.e.,
2, = Var(D})/(E[D]])?) of the demand process for class j,
and c3 the same quantity for the service process B. More-
over, we define

A Zi:l E[D]f]
==l 36
P, E[B,] (36)
and
/_ Var(D*
Cf)1+m+m A Dt (D7) 37)

(Zi E[DF)*

We will next use an approximate formula for the waiting
time in a GI/G/1 queue to approximate E[L/]. Note that
as defined in §6, L; evolves as the queue length process
in a discrete-time G/G/1 queue with arrival process D’
for class j and service process B. The scheduling policy
is a priority policy and as in §7 we reorder, without loss
of generality, the classes so that priority is given to classes
1,...,m in this order. As a consequence, L/ evolves as the
queue length process in a single class G/G/1 queue with
>"i_, D¥ arrivals at time slot i and service process B. Using
the Lindley equation for the queue length of class j at time
slot i we obtain

J J J +
Y Li= [ZL?‘I +ZD5‘—B,} : (38)
k=1 k=1 k=1

where [x]* denotes max(x, 0). Consider now a continuous-
time single class GI/G/1 queue with interarrival times
{A;; i € Z} and service times {S;; i € Z}. Using the Lindley
equation the waiting time of customer i is given by

W, = [Wi—l +Si—1 _A‘]+~ (39)

1

Comparing Equations (38) and (39) we conclude that an
approximate formula for the expected waiting time in the
latter queue will approximate Y ;_, E[L*] when we make
the substitutions S;_, := >";_, D¥ and A, := B,. Using the
Krdamer and Langenbach-Belz (1976) approximations as
reported in Tijms (1986) we conclude that depending on
the value of c3 the quantities E[L’], j=1,...,m, can be
obtained as the solution of one of the following two trian-
gular systems of linear equations. More specifically,

if ¢2 <1 then E[L’], j=1,...,m, solve the system of
linear equations:
j J k
Pj 21 E[Dl]
Y E[L] =~ —————(c5+ i)

k=1 2(1 _pj)
. {—2(1—pj)(1—02)2}

3pj(C123+Cé1+4.4+Dj)

j=1,...,m, (40)

else, if cl% > 1then E[L’], j=1, ..., m, solve the system
of linear equations:
Jj J k
P Zk:l E[Dl] 2 2
E[Lf] =~ =———(ci+pr ip)
]; 2(1 _pj) B D'+-4D.
—(1—p)(c3—1
xp{%}, j=1.....m. (41
Cp +4CD1+...+D/'

Although the above expressions were derived from analysis
of the GI/G/1 queue we will use them in the general case
that both demand and service processes have dependencies;
we will establish via numerical results that they perform
adequately.

9. SELECTING THE “BEST” PRIORITY POLICY

Knowing the structure of the production policy from the
fluid analysis, and the hedging point from the large devia-
tions analysis we have all the ingredients to implement the
proposed production policies: the priority-based policy and
the GLQF-based policy. In the latter case, the costs coeffi-
cients c; are assumed to be given and reflect inventory cost
considerations. In the former case, however, the fluid anal-
ysis determined that priority classes are ordered according
to the backorder cost coefficients. We argued in the Intro-
duction that these coefficients cannot be assumed as given,
since it is very hard to quantify backorder costs (especially
linear). Thus, to completely characterize the proposed pro-
duction policies we are left with selecting the priority order-
ing. We will do that with the objective of minimizing the
expected inventory cost >-7L, i;E[(x/)*].

To that end, we next provide an analytic approximation
for the expected inventory cost. Let 1, ... , m be the priority
ordering and let w; and a; be as determined by the results
in §§7 and 8. We have

hE[(x')"] = hE[(w; —L7)*]
= h;E[max(w; — L’,0)]
= h;(w; —E[L'] +E[max(0, L —w))]), (42)

where we used Equation (18). Using the asymptotic in (33)
we obtain

E[max(0, L' —w;)] = /Oo P[max(0, L’ —w;) > y]dy
A .

:/ P[L' —w; > y]dy
0

00
—w; 0% —x6%
~oae i ”f/ e i dx
0
—wf('),*;}_

e

= a.
J *
5,

(43)

Thus, using (35) we arrive at the following approximation
for the expected inventory cost

ZhjE[(xj)+]
Jj=1
zihj(wj—E[Lj]—i-E[Lj]e_w"O;’f). (44)
=1



Therefore, we will select the priority ordering that min-
imizes the right-hand side of (44). This requires searching
over m! priority orderings which is computationally pro-
hibitive for a large number of classes. In practice, how-
ever, each product j can be thought of as a class of similar
products, which implies that m is a fairly small number. In
addition, observing that 6} increases as class j is elevated
to a higher priority class one can develop heuristic search
algorithms (similar to the bubble sort algorithm) that can
substantially decrease the search time.

10. NUMERICAL RESULTS AND
IMPLEMENTATION ISSUES

To assess the performance of the proposed production poli-
cies, in this section we present numerical results and dis-
cuss issues related to the implementation of the required
algorithmic procedures. In particular, we present two exam-
ples: (i) a three-class example with priority scheduling, and
(ii) a two-class example with GLQF scheduling.

10.1. A Three-Class Example with
Priority Scheduling

Demand and service processes are deterministic Markov-
modulated processes. That is, D! is a function of an under-
lying discrete-time Markov chain which makes one transi-
tion at each time slot. The value of D! is equal to a constant
r, when the Markov chain is in state k. The value of B, is
determined by the evolution of a similar Markov chain. For
the particular example we will analyze the models for the
demand and service processes are depicted in Figure 5.
We first want to examine the accuracy of the procedure
we proposed in §9 to select the priority policy which min-
imizes the expected inventory cost and satisfies the service
level constraints. Table 1 presents some numerical results.
In all cases reported, the optimal ordering x given in the
table is identical to the one obtained by comparing sim-
ulated values for the expected inventory costs when the

Figure 5.

D! 0.4

r = (14,3)
N

E[D']=9.11
0.6 C@ @0.5 Var[D!] = 29.88
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N
0.4C§D 0.2
N

0.4

r =(2,8,0.5)
E[D?] = 2.69

@0.6 Var[D?] = 8.87

BERTSIMAS AND PAscHALIDIS / 129

hedging point is fixed to the value w given in the table.
This suggests that the procedure in §9 predicts the optimal
priority ordering accurately. It is interesting to note that in
all cases our approximation for the expected inventory cost
(Equation (44)) was within 9% of the simulated value (in
fact from 5.5% to 9%), but the error was “ordering pre-
serving,” that is, for each case the approximation was in
fact an upper bound on the simulated value for the best two
orderings.

In Cases 1, 2 and 3 (notice that Cases 1 and 2 are sym-
metrical) the result for the optimal ordering is intuitively
obvious: higher inventory cost &; and smaller €; results
in higher priority for class j. The situation in Cases 4
and 5 is more subtle. In Case 4, although all classes have
the same €’s and class 1 has higher inventory cost than
class 2, it is optimal to give top priority to class 2. The
reason is that class 2 demand arrives in smaller quanti-
ties (mean 2.69 with a peak of 8 versus a mean of 9.11
and a peak of 14), which the server can handle “almost
immediately,” thus, when given top priority it requires very
small safety stock. In addition, since it consumes only a
small fraction of the capacity, serving it with top prior-
ity does not substantially affect the required safety stock
for class 1 ((wyqy, Wy) = (wy, wy) = (4.8,73.49) for
classes 2 and 1, respectively). If on the other hand top
priority is given to class 1, the required safety stocks are
(w;, w,) = (36.53, 64.58) for classes 1 and 2, respectively,
which justifies that it is preferable to serve class 2 with
higher priority. Similarly, in Case 5 it is optimal to give
top priority to class 2, although inventory costs are identi-
cal across classes and class 1 has smaller € than class 2. Of
course, when we bring the € of class 1 sufficiently down
(to 0.001) it becomes optimal to serve it with top priority
(Case 3). But for this to happen the difference in the €’s
between the two classes has to be substantial (0.001 vs.
0.01). The important conclusion is that the optimal priority
ordering may depend on subtle distributional differences
between classes that cannot be captured by just the first few
moments. It is interesting that these differences are cap-

The models for demand and service processes in the three-class example with priority scheduling.

D3
/9;55\& r = (5,0.5)

0.45 @ @ E[D?) =2.94
7035 var[D% =5.03

0.65
B 0.7 r = (0,20)
m E[B] = 15.56

0.3

v 0.8 Var[B] =69.14
0.2

Note. By r we denote the vector of demand or production amounts at each state of the corresponding Markov chain. The demand processes are fairly
“bursty,” meaning that the work arriving per time slot fluctuates substantially as the corresponding Markov chain evolves. The service facility can be in
two states: ON (state 2) where it works at a constant production rate, and OFF (state 1) where it is broken down.
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Table 1.

We follow the notation established so far: h = (h,, h,, h;) denotes the vector of inventory costs for the

products 1,2,3, respectively, e = (€,, €,, €;) are the desirable service levels for the stockout probabilities,
x = (x(1), x(2), x(3)) denotes the optimal priority ordering as derived by the procedure in §9, and w =
(Wy(1)> Wy(2)» Wy(3)) 18 the hedging point required to maintain the service levels (given by Equation (34)). To
obtain the asymptotic constants a; (cf. Equation (35)) required to calculate x and w, we used the approximation

for E[L’] reported in §8.

Inventory costs (h)

Service levels (€)

Optimal ordering (x) Hedging Point (w)

Case 1 (1, 2, 3) (0.05, 0.01, 0.005) 3,2,1) (3.89, 10.77, 231.72)
Case 2 (3,2, 1) (0.005, 0.01, 0.05) 1,2, 3) (44.37, 64.58, 214.26)
Case 3 (1, 1, 1) (0.001, 0.01, 0.05) (1, 2, 3) (88.58, 64.58, 214.26)
Case 4 (3,2, 1) (0.01, 0.01, 0.01) 2, 1,3) (4.8, 73.49, 349.39)
Case 5 (1, 1, 1) (0.007, 0.01, 0.05) 2,1, 3) (4.8, 80.43, 214.26)
Table 2. Comparison of analytically calculated versus simulated hedging points. The priority ordering for all entries is
fixed to (1,2,3).
Calculated w Simulated w’ Error (6) (%)
€ w, w, W; w] w)h w) 5, 0, 05
0.1 17.14 35 181.8 17 36 181 0.82 2.78 0.44
0.05 24.97 48.10 240 27 50 239 7.52 3.8 0.42
0.01 43.16 78.53 375.1 44 81 372 1.91 3.05 0.83
5.1073 50.99 91.63 432.9 52 94 430 1.94 2.52 0.67
1073 69.18 122.05 567.6 70 125 563 1.17 2.36 0.82
5-107* 77.02 135.15 625.6 78 139 621 1.26 2.77 0.74
10~ 95.20 165.58 760.2 96 169 759 0.83 2.02 0.16

tured by our method, since the large deviations behaviour
depends on the whole distribution through the limiting log-
moment generating functions.

We next turn our attention to the accuracy of the
analytically estimated hedging point (Equation (34)).
Table 2 compares the hedging point calculated by
Equation (34) (denoted by w in the table) with the
one obtained by simulation (denoted by w' in the
table) for a range of service levels €. For exam-
ple, if the desired service levels are (0.01, 1073,5 -
10~%), then from the table we read that the analytically
calculated hedging point is w = (43.16, 122.05, 625.6),
while the one obtained from the simulation is W =
(44, 125,621). Notice that to find the required hedging
point via simulation, one needs to simulate the stock-
out probabilities for every possible value of the hedg-
ing point, which is a very computationally intensive task.
The advantage of an analytically obtained hedging point is
apparent. The error we report in the table is defined as
w. — w’,|
8, = ——2L x100%,

J

for class j. We observe that the analytically obtained hedg-
ing point is fairly accurate with the error being mostly less
than 3%, with the exception of two cases where the error
is 3.8% and 7.52%, respectively. Recall that we measure
everything in production time units, thus, the hedging point
is a real number. In the simulation, however, since it is
impossible to simulate for every possible value of the hedg-
ing point, we considered only integer values. As a result,

the reported error includes this “quantization error,” and
hence underestimates the accuracy of the calculated hedg-
ing point (this “quantization” error is up to 1 time unit, that
is 3.7% and 2% for the cases where we report errors of
7.52% and 3.8%, respectively).

Finally, Table 3 reports the stockout probabilities
achieved with the analytically calculated hedging point w
of Table 2. We observe that the actual stockout probabili-
ties are close to the desired target €. More specifically, in
all cases the simulated values have the same order of mag-
nitude with € and the first significant digit is very close.

The calculation of w via Equation (34) requires the
derivation of an asymptotic constant which depends on the
expectation of a queue length process in the corresponding
make-to-order system (cf. Equation (35)). We used simula-
tion to obtain this latter value for the calculations in Tables
2 and 3. It is instructive at this point to consider how the
proposed computational procedure could be implemented.
One requires a detailed model of the demand and ser-
vice processes which can be obtained by on-line estimating
Markov-modulated models from real observations. Given
these models, the analytical calculations can be performed
and a production policy can be obtained. This approach
allows for frequent updates of the Markov-modulated mod-
els (and hence the production policy) to accommodate
changes in the demand and service conditions. Notice, that
since demand and service observations will be made on-
line to infer the appropriate stochastic models, the queue
length expectations required for the calculation of the hedg-
ing point can also be observed at the same time with no
additional computational cost.
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Table 3.  We denote by € = (€], €, €}) the actual stockout probability obtained by simulation of the system when the
hedging point is fixed to the analytically calculated value. For example, if we use the hedging point (50.99,
91.63, 432.9) the simulated values for the stockout probabilities are (5.14-1073,5.49-1073,4.76 - 107%). The

priority ordering for all entries is fixed to (1,2,3).

Calculated w Simulated €’
€ w, w, W; € €) €}

0.1 17.14 35 181.8 8.79-1072 10.45-1072 9.93.1072
0.05 24.97 48.10 240 5.34-1072 5.32-1072 4.89-1072
0.01 43.16 78.53 375.1 10.43-1073 10.74 1073 9.54.1073
5-1073 50.99 91.63 432.9 5.14-1073 5.49.1073 4.76-1073
1073 69.18 122.05 567.6 10.89-10~* 11.74-10~* 9.28.107*
5-107* 77.02 135.15 625.6 5.24-1074 6.00-10~* 4.61-107*
1074 95.20 165.58 760.2 1.03-1074 1.25-1074 9.13-107°

10.2. A Two-Class Example with GLQF Scheduling

We finally consider a two-class system operated under the
GLQF-based policy. The demand and service processes are
depicted in Figure 6. The inventory costs are ¢ = (3, 2)
which implies that 3, as defined in the statement of Theo-
rem 7.3, is equal to 1.5.

As in the previous example, we compare the hedging
point obtained analytically (Equation (34)) with the one
obtained by simulation. The results are reported in Table 4.
Again, we conclude that the analytically obtained hedging
point is very accurate. The same comments as in the previ-
ous example regarding implementation issues and “quanti-
zation” error in the simulation apply.

Furthermore, in Table 5 we report the actual stockout
probabilities achieved when the system operates with the
analytically calculated hedging point w of Table 4.

Asin §10.1, we observe that the simulated stockout prob-
abilities have the same exponent with the target € with the
first significant digits being very close.

11. CONCLUSIONS

We have combined fluid and large deviations techniques
to derive production policies for multiclass make-to-stock
manufacturing systems under realistic modeling assump-

Figure 6.
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tions. Our analysis can handle linear or quadratic inven-
tory costs and ensures that the stockout probability for each
product stays bounded below a desirable threshold. This
leads to manufacturing systems with Quality of Service
guarantees, a feature which we view as being increasingly
important in today’s competitive and service-oriented envi-
ronment.

To provide such guarantees we require detailed distri-
butional information on the stochastic processes involved
(demand and production processes). We demonstrated
through numerical results that such information is criti-
cal in optimizing the performance of the system. Ignor-
ing it can lead to substantial performance loss. The spread
of information technology in manufacturing plants and the
capabilities in data collection and in the implementation of
sophisticated production policies that it provides, enhance
the practical significance of our techniques.
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Table 4. Comparison of analytically calculated versus simulated hedging points.
Calculated w Simulated w’ Error (8) (%)
€ w; w, w) w) ol 8

0.15 27.01 42.93 28 44 3.54 2.43

0.1 3291 51.78 33 52 0.27 0.42

0.05 43.00 66.91 43 67 0 0.13

0.01 66.41 102.04 67 102 0.88 0.04

5-1073 76.5 117.16 77 117 0.65 0.14

1073 99.91 152.29 100 152 0.09 0.19

5-107* 110.00 167.42 110 167 0 0.25
Table 5. Comparing the simulated stockout probabilities € = (e}, €,) with the desired
target €, when the hedging point is fixed to the analytically calculated value w.

Calculated w Simulated €’
€ wy w, € €,
0.15 27.01 42.93 1.51-107! 1.58-107!
0.1 3291 51.78 1.04-107! 1.05-107!
0.05 43.00 66.91 5.04-1072 5.27-1072
0.01 66.41 102.04 1.04-1072 1.01-1072
5-1073 76.5 117.16 5.04-1073 5.10-1073
1073 99.91 152.29 1.04-1073 1.03-1073
5-107* 110.00 167.42 5.04.10~* 5.15-10~*
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